Обработка меди на токарном станке - flagman-ug.ru

Обработка меди на токарном станке

Обрабатываемость меди

Медь является следующим высокопластичным металлом с гранецентрированной кубической решеткой подобно алюминию, но имеет более высокую температуру плавления 1083° С. Вообще, медные сплавы также имеют хорошую обрабатываемость, обусловленную теми же причинами, что и для алюминиевых сплавов. Несмотря на то, что температура плавления меди выше, она недостаточно высока для того, чтобы температуры, возникающие за счет сдвига в зоне пластического течения, оказывали значительное влияние на стойкость или характеристику режущих инструментов. Для обработки применяются инструменты как из быстрорежущей стали, так и из твердого сплава. Обеспечивается достаточная стойкость инструмента, износ инструмента приводит к появлению площадки износа на задней поверхности или лунки износа, или того и другого вместе, однако о подробном изучении механизмов износа не сообщалось. Даже при обработке инструментами из углеродистой стали возможны довольно высокие скорости резания, и до появления быстрорежущих сталей рекомендовались скорости вплоть до 100 м/мин для обработки латуни.

Наиболее важной областью механической обработки сплавов на медной основе является массовое производство электрической и другой арматуры на высокоскоростных станках-автоматах. Такими станками являются главным образом высокоскоростные токарные станки, в которых, однако, применение латунной проволоки сравнительно небольшого диаметра ограничивает максимальные скорости резания до 140—220 м/мин, хотя при необходимости инструмент обеспечивает хорошую работу при гораздо большей скорости резания.

Силы резания, возникающие при обработке чистой меди, очень большие, особенно при низких скоростях резания (рис. 7.4), что, как и в случае обработки алюминия, в основном вызвало большой площадью контакта на передней поверхности, приводящей к образованию небольшого угла сдвига и к толстой стружке. По этой причине медь с высокой электропроводностью считается одним из наиболее труднообрабатываемых материалов. Например, при сверлении глубоких отверстий силы резания часто настолько велики, что вызывают разрушение сверла. Дополнительными проблемами при обработке чистой меди являются низкое качество поверхности, особенно при низких скоростях резания, и высокая прочность запутанной сливной стружки, трудно поддающейся уборке.

Качество механической обработки меди может быть несколько улучшено за счет холодного пластического деформирования, однако значительное улучшение достигается легированием. На рис. 7.4 показано уменьшение сил резания в результате холодной обработки, что привело к уменьшению площади контакта, обеспечило больший угол сдвига и более тонкую стружку. При обработке однофазной латуни 70/30 силы резания меньше, однако заметное уменьшение сил резания наблюдается у двухфазной латуни 60/40, при обработке которой силы резания ниже во всем диапазоне скоростей резания, стружка тоньше, и площадка контакта на передней поверхности небольшая. Минимальные силы резания отмечаются в сплавах с высоким содержанием цинка, в которых выше относительное содержание b-фазы. Низкие силы резания и небольшое потребление мощности на а—b-латунях совместно с низкой скоростью износа инструмента являются основной причиной, позволившей классифицировать эти сплавы как легкообрабатываемые.

Однако образующаяся при обработке латуни сливная стружка потребовала введения добавок как для упрощения удаления стружки, так и для улучшения качества поверхности, что привело к получению легкообрабатываемой латуни. Обычно в качестве добавок вводят свинец в количестве 2—3% по весу. Свинец растворяется в расплавленной латуни, однако при затвердевании он выделяется, осаждающиеся частицы обычно размером от 1 до 10 мкм в диаметре должны быть равномерно диспергированы для обеспечения хорошей обрабатываемости. Эти добавки значительно уменьшают силы резания (рис. 7.5), которые становятся почти не зависящими от скорости резания. Образуется тонкая, незначительно превышающая величину подачи стружка, разделяющаяся на очень короткие части, легко поддающиеся уборке. При этом скорость износа инструмента также уменьшается. Легкообрабатываемая латунь может в течение длительного периода обрабатываться на станке-автомате без остановки станка для смены инструмента или уборки стружки. Многие детали небольшого размера экономически выгодно изготовлять из легкообрабатываемой латуни, несмотря на высокую стоимость меди. Наиболее вероятная причина успешного применения свинца для улучшения обрабатываемости меди заключается в уменьшении пластичности, что приводит к полному или частичному разрушению в плоскости сдвига. В дополнение к облегчению разделения стружки это обеспечивает быстрое падение нормальных напряжений, прижимающих стружку к инструменту, за режущей кромкой и уменьшению площади контакта.

Добавки вводятся также и в медь с высокой электропроводностью для улучшения ее обрабатываемости. Сера и теллур вводятся для образования пластических неметаллических включений — Сu2S или Сu2Те, диспергированных в структуре. Добавки к меди не должны вызывать заметного уменьшения электропроводности или появление трещин при горячей обработке. Обычно добавляют около 0,3% серы или 0,5% теллура, снижающих электропроводность до 98% по сравнению со стандартной медью с высокой электропроводностью. Влияние добавок заключается в значительном уменьшении сил резания, особенно на низких скоростях резания (рис. 7.5), и получении тонкой стружки, которая может легко завиваться и ломаться. Качество обработанной поверхности заметно улучшается.

Все двухфазные сплавы, включая легкообрабатываемые медь и а—b-латуни, имеют тенденцию к образованию нароста при низких скоростях резания. Эта тенденция исчезает с повышением скорости резания, например, свыше 30 м/мин, хотя имеются данные об образовании небольшого нароста при обработке меди со скоростью вплоть до 600 м/мин.

Токарная обработка меди

Токарная обработка меди недорого в ООО “Токарная обработка” на okuma B400, 16К20, 1К63, ДИП500 и токарных автоматах. От 3х дней. Есть закалка, гальваника. Отправьте запрос с чертежами на электронную почту: [email protected]

Токарная обработка меди

Наше производственное предприятие предлагает услуги токарной обработки меди. Наши специалисты выполняют работы на высокоточном оборудовании, которое позволяет добиться необходимой точности и шероховатости поверхности.

Для расчета стоимости токарной обработки меди пошлите запрос с чертежами на электронную почту [email protected] Ответим на любые вопросы 8 3439 38 00 81, 8 3439 38 98 01, доставка по всей России.

На сегодняшний день самым популярным способом изготовления деталей из меди является срезание лишних слоев с поверхности заготовки на токарном оборудовании для придания детали необходимой формы. Все токарные операции выполняются на современных металлорежущих станках, многие из которых оснащены числовым программным управлением. Наше оборудование позволяет обрабатывать различные тела вращения из меди: гайки, муфты, кольца, втулки, шкивы, зубчатые колеса, валы и т.д.

Виды токарной обработки меди.

Высококвалифицированные работники нашей компании обрабатывают торцевые, фасонные, конические, цилиндрические и комбинированные поверхности деталей из меди. Также на имеющихся станках мы обрабатываем отверстия, протачиваем канавки, нарезаем резьбу, зенкеруем отверстия и вытачиваем различные уступы. Для всех операций используется высококачественный режущий инструмент: резьбонарезные головки, плашки, метчики, развертки, зенкеры, свела, различные виды резцов и т.д. Качественные резцы с легкостью врезаются в медные заготовки и отделяют необходимый слой с поверхности. Весь процесс токарной обработки меди протекает с высокой скоростью, что позволяет получить детали отличного качества. Точность формы изделий обеспечивается подбором резца требуемой геометрии, а также высокой точностью подачи режущего инструмента. Заготовки вращаются с большой скоростью, а числовое программное управление обеспечивает высокоточную поперечную и продольную подачу резца относительно детали.

Специалисты нашего предприятия выполняют следующие виды токарной обработки меди:

  • Обработку цилиндрических поверхностей;
  • Сверление отверстий;
  • Обработку фасонной поверхности;
  • Обработку конической поверхности;
  • Обработку уступов и торцов;
  • Обрезку заготовок;
  • Выточку фасок;
  • Развертывание отверстий;
  • Нарезку резьбы.

Для выполнения токарной обработки деталей используются расточные резцы, канавочные, отрезные, проходные отогнутые, упорные, проходные прямые, фасонные резцы, накатки, резьбовые резцы, зенкера, сверла, развертки и метчики. Весь используемый инструмент сертифицирован.

Технология токарной обработки меди.

Наше предприятие выполняет работы на токарном оборудовании различного типа. В производственном арсенале имеется: токарно-карусельное, лоботокарное, токарно-револьверное и токарно-винторезное оборудование. В зависимости от требований заказчиков и чертежей, для изготовления медных деталей выбирается оптимальный вариант обработки.

На токарно-винторезном оборудовании наши специалисты выполняют высокоточные операции по нарезке резьбы. Для получения деталей максимального качества, выставляется необходимая частота вращения детали и обеспечивается точная подача суппорта с установленным резцом. На оборудовании предусмотрен ручной и автоматический режимы подачи. Все рабочие места наших высококвалифицированных токарей оснащены современным токарным оборудованием, комплектами специализированной технологической оснастки, вспомогательным и измерительным инструментом, всевозможными приспособлениями и принадлежностями. Вся оснастки и инструмент тщательно подбираются исходя из технического задания по токарной обработке. Наличие профессионального оборудования позволяет нам в сжатые сроки выполнять крупносерийные и мелкосерийные заказы, изготовить детали по чертежам заказчика. Все рабочие места токарей содержатся в чистоте, что исключает сбои в работе оборудования и появление брака.

Наше предприятие постоянно калибрует имеющиеся станки и внедряет современные производственные технологии. Все сотрудники нашего предприятия имеют высокую квалификацию и большой опыт работы. Использование современного оборудования, оснащенного числовым программным управлением, для токарной обработки меди, позволяет максимально автоматизировать производственный процесс, что в свою очередь обеспечивает не высокую стоимость выполнения работ. Также достижение максимальной производительности и высокого качества на нашем предприятии обеспечивается полным использованием всего производственного потенциала и отличных технических возможностей нашего современного оборудования.

Любой наш клиент может быть уверен в высоком качестве обработки меди и своевременном получении заказа. Наши специалисты всегда бесплатно проконсультируют заказчиков по всем производственным вопросам. Обратившись к нам, клиенты не только сэкономят собственное время, но и существенно сократят свои затраты.

Как осуществляется обработка меди

Медь проходит несколько этапов обработки перед тем как ее можно использовать в производстве

После получения металла из медной руды, он формируется в слитки различной формы и для дальнейшего производства изделий из таких заготовок необходима предварительная обработка меди. В зависимости о требуемого состояния металла, обработка осуществляется различными способами:

Когда применяют термообработку меди

Термообработка — это нагрев сырья или готово изделия

Если необходимо повысить прочность изделий, упругость, износоустойчивость или, наоборот, получить более мягкий металл, поддающийся дальнейшему механическому воздействию, используют термическую обработку меди. Этот процесс может осуществляться различными способами — закалкой и отжигом, они различаются температурой нагрева и способом остывания. Для того чтобы изделию из меди придать твердость и прочность ее следует нагреть до температуры 600 о С и остудить на воздухе, это так называемое медленное остывание. Если нужен мягкий металл, то сырье следует нагреть до 600 о С и подвергнуть быстрому остужению в воде, далее придать форму изделию, снова нагреть, на этот раз до 400 о С и оставить медленно остывать в итоге получится мягкое изделие. Для того чтобы изогнуть медную трубу ее сначала наполняют песком, это позволит избежать сплющивания в процессе термической обработки, а затем нагревают и придают нужную форму. С помощью термической обработки меди осуществляется процесс снятия наклепа и окалины, для этого металл нагревают до 500 о С и охлаждают в воде.

Как осуществляют механическую обработку

После процесса отжига металлу необходимо придать форму, блеск, рисунок, для этого применяют механические способы обработки. Для начала изделия необходимо очистить от масла, оксидов, накала и прочих загрязнений, осуществлять процессы можно только на сухой поверхности. Холодная или механическая обработка меди выполняется несколькими способами:

Для товарного вида медные изделия подвергают механической обработке

  • прокатка;
  • протяжка;
  • шлифовка;
  • полировка.

Процесс прокатки металла осуществляется с помощью механической или автоматической установки, оснащенной вальцами, между которыми пропускается лист медной заготовки. Толщина готового изделия регулируется в зависимости от потребности. Вальца смазываются маслом или специальной эмульсией, которые оставляют тонкий слой пленки на готовом изделии.

Протяжка меди осуществляется при изготовлении проволоки, жил для проводов и кабелей. Выполняется с помощью экструдерного механизма, регулировка диаметра выполняется автоматически по заранее заданным параметрам.

Шлифование медных изделий

Шлифование медных изделий происходит с помощью дисков и лент, на которые нанесено абразивное покрытие. Для шлифовки обычно используют абразивные материалы с зернистостью порядка 180 – 200 мкм, для изделий, которые прошли ковку достаточно будет 80 – 100 мкм.

Полирование осуществляется с использованием тканевых или войлочных дисков, пемзой, трепела, а также с применением оксида железа и венской извести. Этот процесс выполняется на полировочных машинах, для меди достаточно скорости в 20 – 40 м/с, увеличение ведет к более глубокому снятию верхнего слоя. Для предотвращения обесцвечивания применяют слабый раствор органической кислоты, например, щавелевой или винной. Эффективно обрабатывать полируемую поверхность растворами, содержащими ингибитор коррозии, они препятствуют окислению и дольше сохраняют цвет.

Токарный способ обработки

Распространенным способом обработки медных заготовок является токарный, с использованием специальных станков, оснащенных резцами. Благодаря этому методу обработки можно изготавливать большое разнообразие форм и деталей цилиндрической, сферической, конической формы. Механизм работы токарных станков заключается в воздействии режущего механизма на деталь, он врезается в заготовку и снимает лишний слой, который превращается в стружку. Скорость движения режущего механизма имеет большое значение в обработке различных видов металла. Поскольку медь является мягким материалом, для нее будет достаточно 40 — 50 м/с. С помощью токарной обработки меди можно получить следующие виды изделий:

Токарная обработка позволяет получить деталь любой формы

  • шайбы;
  • втулки;
  • фланцы;
  • шпильки;
  • штуцеры.

Предприятия, осуществляющие токарную обработку металлов, могут выполнять большое разнообразие видов изделий по индивидуальным заказам. Станки настраиваются под параметры, каждой детали. С помощью токарного оборудования на медные заготовки наносится резьба, осуществляется выточка фасок, сверление отверстий, геометрическая обрезка. Использование автоматизированных станков позволяет выполнять сложнейшую отделку заготовок с максимальной точностью, при этом снижается процент брака и минимизируются отходы.

Видео: Обработка меди

Токарная обработка меди

Токарная обработка меди недорого в ООО “Токарная обработка” на okuma B400, 16К20, 1К63, ДИП500 и токарных автоматах. От 3х дней. Есть закалка, гальваника. Отправьте запрос с чертежами на электронную почту: [email protected]

Токарная обработка меди

Наше производственное предприятие предлагает услуги токарной обработки меди. Наши специалисты выполняют работы на высокоточном оборудовании, которое позволяет добиться необходимой точности и шероховатости поверхности.

Для расчета стоимости токарной обработки меди пошлите запрос с чертежами на электронную почту [email protected] Ответим на любые вопросы 8 3439 38 00 81, 8 3439 38 98 01, доставка по всей России.

На сегодняшний день самым популярным способом изготовления деталей из меди является срезание лишних слоев с поверхности заготовки на токарном оборудовании для придания детали необходимой формы. Все токарные операции выполняются на современных металлорежущих станках, многие из которых оснащены числовым программным управлением. Наше оборудование позволяет обрабатывать различные тела вращения из меди: гайки, муфты, кольца, втулки, шкивы, зубчатые колеса, валы и т.д.

Виды токарной обработки меди.

Высококвалифицированные работники нашей компании обрабатывают торцевые, фасонные, конические, цилиндрические и комбинированные поверхности деталей из меди. Также на имеющихся станках мы обрабатываем отверстия, протачиваем канавки, нарезаем резьбу, зенкеруем отверстия и вытачиваем различные уступы. Для всех операций используется высококачественный режущий инструмент: резьбонарезные головки, плашки, метчики, развертки, зенкеры, свела, различные виды резцов и т.д. Качественные резцы с легкостью врезаются в медные заготовки и отделяют необходимый слой с поверхности. Весь процесс токарной обработки меди протекает с высокой скоростью, что позволяет получить детали отличного качества. Точность формы изделий обеспечивается подбором резца требуемой геометрии, а также высокой точностью подачи режущего инструмента. Заготовки вращаются с большой скоростью, а числовое программное управление обеспечивает высокоточную поперечную и продольную подачу резца относительно детали.

Специалисты нашего предприятия выполняют следующие виды токарной обработки меди:

  • Обработку цилиндрических поверхностей;
  • Сверление отверстий;
  • Обработку фасонной поверхности;
  • Обработку конической поверхности;
  • Обработку уступов и торцов;
  • Обрезку заготовок;
  • Выточку фасок;
  • Развертывание отверстий;
  • Нарезку резьбы.

Для выполнения токарной обработки деталей используются расточные резцы, канавочные, отрезные, проходные отогнутые, упорные, проходные прямые, фасонные резцы, накатки, резьбовые резцы, зенкера, сверла, развертки и метчики. Весь используемый инструмент сертифицирован.

Технология токарной обработки меди.

Наше предприятие выполняет работы на токарном оборудовании различного типа. В производственном арсенале имеется: токарно-карусельное, лоботокарное, токарно-револьверное и токарно-винторезное оборудование. В зависимости от требований заказчиков и чертежей, для изготовления медных деталей выбирается оптимальный вариант обработки.

На токарно-винторезном оборудовании наши специалисты выполняют высокоточные операции по нарезке резьбы. Для получения деталей максимального качества, выставляется необходимая частота вращения детали и обеспечивается точная подача суппорта с установленным резцом. На оборудовании предусмотрен ручной и автоматический режимы подачи. Все рабочие места наших высококвалифицированных токарей оснащены современным токарным оборудованием, комплектами специализированной технологической оснастки, вспомогательным и измерительным инструментом, всевозможными приспособлениями и принадлежностями. Вся оснастки и инструмент тщательно подбираются исходя из технического задания по токарной обработке. Наличие профессионального оборудования позволяет нам в сжатые сроки выполнять крупносерийные и мелкосерийные заказы, изготовить детали по чертежам заказчика. Все рабочие места токарей содержатся в чистоте, что исключает сбои в работе оборудования и появление брака.

Наше предприятие постоянно калибрует имеющиеся станки и внедряет современные производственные технологии. Все сотрудники нашего предприятия имеют высокую квалификацию и большой опыт работы. Использование современного оборудования, оснащенного числовым программным управлением, для токарной обработки меди, позволяет максимально автоматизировать производственный процесс, что в свою очередь обеспечивает не высокую стоимость выполнения работ. Также достижение максимальной производительности и высокого качества на нашем предприятии обеспечивается полным использованием всего производственного потенциала и отличных технических возможностей нашего современного оборудования.

Любой наш клиент может быть уверен в высоком качестве обработки меди и своевременном получении заказа. Наши специалисты всегда бесплатно проконсультируют заказчиков по всем производственным вопросам. Обратившись к нам, клиенты не только сэкономят собственное время, но и существенно сократят свои затраты.

Режимы и особенности токарной обработки металла

[Токарная обработка] – один из распространенных методов обработки металла, посредством которого обычная стальная заготовка становится подходящей деталью для механизма.

Для токарных работ используются токарные станки, инструменты и приспособления в виде резцов, которые являются многофункциональными и способны создавать детали любых геометрических форм: цилиндрических, конических, сферических из всех металлов: титана, бронзы, нержавеющей стали, чугуна, меди и др.

Токарная технология

Токарная обработка металла производится на токарном станке, имеющим сверла, резцы и иные режущие приспособления, срезающие слой металла с изделия до установленной величины. Является оптимальной для работы с деталями из нержавеющей стали.

Вращение обрабатываемой детали называется главным движением, а постоянное перемещение режущего инструмента обозначается движением подачи, обеспечивающим непрерывную резку до установленных показателей.

Возможность сочетать различные движения позволяет обтачивать на токарном устройстве детали резьбовых, конических, цилиндрических, сферических и многих других поверхностей.

Также на токарных устройствах нарезается резьба, отрезаются части деталей из разных металлов и нержавеющей стали, обрабатываются различные отверстия сверлением, развертыванием, растачиванием. Все процессы подробно представлены на видео.

Для таких видов резания обязательно нужно использовать разнообразные измерительные приспособления (штангенциркули, нутромеры и т.д.).

Эти инструменты и приспособления определяют формы и размеры, и иные параметры деталей, изготовленных из различных материалов: свинца, железа, титана, нержавеющей стали и др.

Технология токарной обработки следующая. Когда под воздействием усилия в деталь врезается кромка режущего инструмента, данная кромка отмечает зажим обрабатываемого изделия.

В это время резцом удаляется лишний слой металла, превращающийся в стружку. Принцип резания можно посмотреть на видео.

Стружка подразделяется на следующие виды:

слитая — возникает при высокоскоростной обработке олова, меди, пластмасса, мягкой стали;

элементная — образовывается при низкоскоростной обработке твердого металла, например, титана;

надлом — образовывается при обработке малопластичных заготовок;

ступенчатая — образовывается при среднескоростной обработке металлов средней твердости.

Для производительного резания нужно правильно произвести расчет режима.

Расчет режимов производится на основе справочных и нормативных сведений, которые объединяет специальная таблица.

Таблица отображает режимы скорости резания для разных материалов: меди, чугуна, титана, латуни, нержавеющей стали и т.д. Также таблица отображает плотность и другие физические параметры материала.

Расчет режимов служит гарантией подбора оптимальных значений всех показателей и обеспечения высокоэффективного резания стали.

Любой расчет начинается с подбора глубины резания, после чего устанавливается подача и скорость.

Расчет должен выполнять строго в данной последовательности, так как скорость больше всего влияет устойчивость и износ резца.

Расчет режимов будет идеальным, если учесть геометрическую форму резца, металл изготовления резца и материал обрабатываемой заготовки.

В первую очередь, производится расчет величины шероховатости заготовки.

Исходя из данного показателя, выбирается оптимальный способ обточки поверхностей заготовки, таблица содержит данные значения.

Таблица содержит данные, указывающие на то, какой инструмент рекомендуется для резания.

Нужно иметь в виду, что таблица также содержит иллюстрации, демонстрирующие рациональные способы токарной обработки поверхностей разных металлов: олова, алюминия, титана, меди, нержавеющей стали.

Расчет глубины высчитывается показателем припуска на обточку поверхностей. На расчет величины подачи влияет уровень требуемой чистоты обточки.

Максимальные показатели выставляются для черновой обработки, минимальные – для чистовой.

Расчет скорости обработки поверхностей основывается на основе полученных значений по формулам. Допускается брать скорость, значения которой содержит таблица.

Также необходим расчет усилия резания по эмпирическим формулам, установленным для каждого типа обработки.

Преимуществами токарного резания можно назвать:

возможность производства деталей самых сложных форм: сферических, цилиндрических и др.;

возможность обработки любых металлов (и деталей из них) и сплавов: бронзы, нержавеющей стали, чугуна, титана, меди;

высокая скорость, качество и точность обработки металла и деталей;

минимальное количество отходов, так как образовавшаяся стружка может повторно переплавляться и использовать для создания деталей.

Какие используются резцы?

Широкий спектр токарных работ обеспечивается разнообразием обрабатывающих инструментов. Наиболее распространенным инструментом являются резцы.

Ключевое отличие всех резцов — форма режущей кромки, влияющей на тип обработки.

Все режущие приспособления изготовлены из металлов, прочность которых превышает прочность обрабатываемого изделия: вольфрама, титана, тантала.

Также можно встретить резцы керамические и алмазные, использующиеся для обточки, требующей высокой точности.

На эффективность работы оборудования влияет глубина и скорость обработки, величина продольной подачи заготовки.

Данные параметры обеспечивают:

высокую скорость вращения шпинделя механизма и обточки детали;

высокую устойчивость устройства для рассекания;

максимально допустимое количество образовывающейся стружки.

Скорость резки зависит от вида металла, типа и качества режущего приспособления. Показатель обточки и скорость рассекания устанавливают частоту вращения шпинделя.

Токарный механизм может иметь чистовые или черновые резцы.

Геометрические размеры режущего приспособления позволяют срезать малые и большие площади слоя. По направлению движения резцы делятся на правые и левые.

По размещению лезвия и форме резцы бывают следующих видов:

оттянутые (когда ширина резца меньше ширины крепления).

По назначению режущие приспособления подразделяются на:

  • резьбовые;
  • расточные;
  • фасонные;
  • проходные;
  • канавочные;
  • подрезные;
  • отрезные.

Эффективность токарной обработки значительно увеличивается при грамотном подборе геометрии резца, влияющей на качество и скорость обработки.

Для правильного выбора нужно знать про углы, представляющие собой углы между направлением подачи и кромками режущего инструмента.

Углы бывают следующих видов:

Угол при вершине выставляется в зависимости от расточки резца, а главный и вспомогательный – от установки резца.

При больших показателях главного угла снизится стойкость резца, так как в работе будет только небольшая часть кромки.

При низких показателях главного угла, резец будет устойчивым, что обеспечит эффективную обработку резцом.

Для тонких деталей средней жесткости главный угол выставляется в значении 60-90°, для деталей с большим сечением выставляется угол в 30-45°.

Вспомогательный угол для создания деталей должен составлять 10-30°. Большое значение угла ослабит вершину резца.

Для торцовых, сферических и цилиндрических поверхностей деталей одновременно используются упорные проходные резцы.

Для наружных поверхностей используются отогнутые и прямые резцы, отрезные резцы применяются для обточки канавок и отрезания определенных частей изделия.

Обточка фасонных поверхностей, у которых образуется линия длиной до 4 см, осуществляется фасонными резцами круглыми, стержневыми, тангенциальными и радиальными по направлению подачи.

Какое оборудование используется?

Самым востребованным оборудованием для резания поверхностей является токарно-винторезный станок, который считается широко универсальным.

Основными узлами данного оборудования являются:

передняя бабка на станке, имеющая коробку скоростей и шпиндель, и задняя бабка, оснащенная корпусом, продольной салазкой и пинолью;

суппорт – верхне- и среднеполочные, продольные нижние салазки на станке, держатель резца;

станина горизонтального плана с тумбами, в которых расположены двигатели на станке;

коробка подач на станке.

Главным критерием токарного станка считается скорость, напрямую увеличивающая производительность.

Для получения высокоточных линейных и диаметральных геометрических величин часто используются программируемые станки с ЧПУ.

Плюсами резания механизмом с ЧПУ являются:

высокая антивибрационная устойчивость;

наличие программ предварительного нагрева узлов, что снижает термическую деформацию заготовок;

отсутствие станочных приводов-зазоров в передаточных устройствах;

высокая скорость обработки;

рассекание любых металлов: чугуна, меди, титана, нержавеющей стали и др.;

обточка поверхностей любых форм: сферических, цилиндрических и т.д.

Все устройства с ЧПУ оснащены износостойкими направляющими с низкими показателями силы трения, что обеспечивает высокую точность и скорость обработки.

В устройстве с ЧПУ направляющие могут быть расположены вертикально и горизонтально.

Для максимально эффективного использования токарного устройства с ЧПУ должен быть тщательно подготовлен весь процесс и составлена программа управления.

Важным моментом является грамотное связывание системы координат механизма с ЧПУ, положение обрабатываемой заготовки и исходной точки передвижения режущего инструмента.

Основой программирования механизма с ЧПУ является движение режущего приспособления по отношению к системе координат двигателя, которая находится в состоянии покоя.

Обработка деталей механизмом с ЧПУ производится следующим образом:

Разделение процесса на 3 стадии: черновую, чистовую и дополнительную отделочную. Если есть возможность, то последние оба вида отделки нужно совместить, что увеличит производительность и снизит трудоемкость;

Соблюдение конструкторских и технологических правил для уменьшения погрешностей крепления и размещения детали;

Обеспечение полной обработки детали при минимальном количестве установок;

Рациональная работа с деталями.

Важной частью процесса резания на устройстве с ЧПУ является, так называемая, отдельная операция, подразумевающая обработку одного изделия на одном станке.

Процесс состоит из нескольких переходов, которые делятся на самостоятельные проходы.

Правильное программирование механизма с ЧПУ нуждается в разработке последовательности процесса.

Для этого нужно задать общее количество установок, количество переходов и проходов, тип обработки.

Также для резания используются такие виды станков, как токарно-револьверные, предназначенные для сложных изделий, токарно-карусельные, многорезцовые полуавтоматические, токарно-винторезные, токарно-фрезерные, лоботокарные.

Частое применение получили винторезные и карусельные станки. Отличаются карусельные станки возможностью обработки крупных заготовок, на винторезном механизме это невозможно.

В токарно-револьверном оборудовании режущие приспособления фиксируются в барабане.

Такой вид оборудования оснащается приводными блоками, расширяющими спектр работ в отличие от стандартных устройств, например сверление отверстий, нарезание резьбы, фрезеровка.

Используются подобные станки на крупных предприятиях.

С использованием токарного обрабатывающего центра выполняется токарно-фрезерная обработка в полуавтоматическом режиме.

Токарно-фрезерная обработка часто используется для титана, алюминия и других сложных в обработке материалов.

Токарная обработка металла – один из популярных методов резания любых металлов: алюминия, титана, меди, олова и других, однако осуществить такую обработку можно лишь на предприятии, что обусловлено использованием станков.

Технология резания представлена на видео в нашей статье.

Ссылка на основную публикацию