Как обозначается нержавеющая сталь
Маркировка нержавеющей стали: тонкости обозначения нержавейки
Маркировка, с помощью которой обозначаются различные типы нержавеющих сталей, позволяет получить информацию не только о химическом составе сплава, но и об основных свойствах, которыми он обладает. Правила формирования обозначения, состоящего из буквенных и цифровых символов, регламентируются положениями как отечественных, так и международных нормативных документов.
Труба нержавеющая тонкостенная марки 12Х18Н10Т
Правила маркировки стальных сплавов в разных странах мира
Сталь различных марок, которая широко представлена на современном рынке, производят во многих странах мира. В связи с этим актуальным является вопрос принятия международных правил, по которым она обозначается. Однако, к сожалению, единых правил обозначения сталей нет и по сегодняшний день, что часто становится причиной серьезных затруднений как при продаже таких сплавов на международном рынке, так и при их применении в промышленности.
В отдельных странах (речь идет прежде всего о крупнейших производителях стали) приняты свои нормативные документы, по которым осуществляется маркировка. Потребителю из другого региона для правильного выбора стали необходимо сопоставить ее маркировку с обозначениями, принятыми в его стране.
Схема европейской маркировки стали
В европейских странах сталь производят и обозначают в соответствии с положениями стандарта EN 100 27, который состоит из двух частей. В первой из таких частей оговаривается принцип, по которому стальным сплавам присваиваются определенные наименования, а во второй – принцип присвоения стали числовых обозначений.
Пример расшифровки европейской марки стали
В России, как и во многих странах СНГ, используется принцип маркировки стали, заимствованный еще из старых советских ГОСТов. В соответствии с этим принципом маркировка сталей формируется из буквенных и числовых символов. Цифры указывают на содержание определенных химических элементов в сплаве, а буквы – это закодированные названия данных элементов, а также способы, при помощи которых выполнялась выплавка стали.
В США, которые являются крупнейшим производителем стали, используется сразу несколько систем ее обозначения – SAE, AJS, AMS, ASTM, ANSI, ASME, AWS и ACJ. Наиболее распространенной из них из-за большей унифицированности является ANSI.
Обозначение сталей в системе AISI
Достаточно сложная система маркировки нержавеющей стали используется в Японии. Так, в соответствии с данной системой, все стальные сплавы разделены на отдельные группы, каждая из которых обозначается определенной литерой. Внутри каждой из таких групп стали разделены на подгруппы, маркируемые уже при помощи цифр, по которым и можно определить химический состав сплава, а также получить информацию о его свойствах.
Естественно, что все перечисленные системы используются для маркировки как обычных, так и нержавеющих сталей.
Соответствие нержавеющих сталей различных стандартов
Принципы обозначения нержавеющих сталей в России и странах СНГ
Нержавеющие стали в России и странах СНГ, как уже говорилось выше, маркируются при помощи сочетания буквенных и цифровых символов. При этом первые указывают на то, какие химические элементы содержатся в составе стали, а также на способы ее выплавки, а по цифрам можно определить количественное содержание перечисленных в обозначении нержавейки элементов.
Все буквенные обозначения химических элементов, используемые в маркировке нержавеющих сталей, унифицированы и по ним можно однозначно определить состав нержавейки.
Так, в стандарте, основой которого стал советский ГОСТ, оговариваются следующие буквенные обозначения химических элементов:
- С – кремний, который вводят в состав нержавейки для того, чтобы на поверхности изделий, которые из нее изготовлены, после выполнения термообработки не формировался слой окалины;
- Ю – алюминий, при помощи которого добиваются стабилизации структуры нержавеющей стали, а также снижают риск формировании в структуре сплава посторонних включений, что может происходить в тот момент, когда изделия из него контактируют с кипящими жидкостями;
- Х – хром, являющийся основным легирующим элементом всех нержавеющих стальных сплавов и придающий им исключительную коррозионную устойчивость, за которую они и ценятся;
- М – молибден, придающий структуре нержавеющих сталей устойчивость при их взаимодействии с агрессивными газовыми средами;
- Е – селен, обеспечивающий изделиям из нержавеющих сталей требуемые параметры электрического сопротивления;
- Р – бор, повышающий коррозионную устойчивость сталей при воздействии на них химических сред и высокой температуры;
- К – кобальт, применяемый для стабилизации углерода, содержащегося в стали;
- П – фосфор, используемый в стали в качестве коррозионного пассиватора;
- Б – ниобий, который вводят в состав нержавейки для того, чтобы активировать ферритные процессы, протекающие в кристаллах внутренней структуры металла;
- Ф – ванадий, добавляемый в состав нержавеющей стали для повышения ее пластичности.
Дополнительные буквы в маркировке высококачественных сталей
Естественно, это не весь перечень химических элементов, которые могут содержаться в составе нержавейки. Как и в любой другой стали, в составе нержавеющего сплава в обязательном порядке содержится углерод (буква «У» в маркировке), который не только придает ему требуемые прочностные характеристики, но и повышает устойчивость к окислительным процессам. Чтобы придать нержавейке хорошую ковкость и повысить ее устойчивость к воздействию высоких температур, в нее добавляют никель, который в маркировке сплава обозначается буквой «Н».
Несмотря на то, что нержавеющие стали и так отличаются высокой коррозионной устойчивостью, степень такой защиты можно повысить, если добавить в их состав медь, обозначаемую в маркировке буквой «Д». Кроме перечисленных элементов, в составе нержавеющих сталей могут присутствовать марганец (буква «Г»), титан («Т»), цирконий («Ц») и вольфрам («В»).
На что указывают цифры в маркировке
Цифры, присутствующие в маркировке, позволяют узнать о количестве элементов, которые содержатся в нержавеющей стали. Разбираясь в маркировке такого сплава, следует иметь в виду, что самые первые цифры, стоящие перед буквенным обозначением, указывают на содержание углерода в десятых долях процента. Например, в нержавейке марки 12Х18Н10Т содержится 0,12% углерода.
Маркировка конструкционных марок сталей
За каждой буквой в маркировке сплава, как видно из приведенного примера, также стоит цифра, которая указывает на содержание определенного химического элемента, но уже в целых процентах. Так, в рассматриваемом в качестве примера сплаве в соответствии с его маркировкой содержатся следующие химические элементы:
- хром – 18%;
- никель – 10%;
- титан – до 1,5% (так как после буквенного обозначения данного элемента не проставлено никаких цифр).
Цифры в маркировке нержавеющей стали
Таким образом, разобраться в маркировке нержавеющих стальных сплавов не так сложно, а для того чтобы получить информацию о наиболее значимых характеристиках и свойствах стали определенной марки, достаточно заглянуть в специальные таблицы.
И в заключение небольшое общеобразовательное видео о нержавеющей стали, ее разновидностях, характеристиках и маркировке.
Маркировка нержавеющей стали – как кодируются такие сплавы?
Маркировка нержавеющих сталей имеет ряд особенностей, которые оговариваются в различных отечественных, международных и зарубежных стандартах.
1 Принципы маркировки сталей в разных странах мира
Ежегодно на планете производятся миллионы тонн сплавов и сталей самых разных марок. Их ассортимент в последние десятилетия стал настолько огромным, что возникла реальная необходимость создания специальной системы классификации, в которой бы каждый материал имел свою собственную кодировку. К сожалению, на данный момент в мире нет единой системы идентификации стальных сплавов. Это становится причиной того, что международный рынок торговли металлами испытывает немалые трудности.
Ведущие страны-производители стали работают по своим собственным классификациям, а затем металлы сопоставляются со стандартами, принятыми в других государствах.
Например, страны Европы изготавливают сталь по системе EN 100 27. В ее двух отдельных частях устанавливается принцип наименования сплавов и принцип присвоения им числовых номеров. В Российской Федерации и большинстве стран СНГ применяется система Госстандартов, определяющая каждый сплав при помощи цифр и букв. Цифры указывают на содержание тех или иных элементов в готовой продукции, а буквы – на их названия, а также на методы, по которым производилась выплавка металлов.
В США стандартизация продукции металлургических предприятий осуществляется сразу по нескольким системам – AJS, SAE, ASTM, АMS, ANSI, AWS, ASME, ACJ. При этом самой распространенной и унифицированной считается система ANSI. А в Японии все металлические сплавы делят на группы, присваивая им определенную литеру. Затем внутри каждой группы производят еще одно подразделение сталей с присвоением им какой-либо цифры, описывающей конкретные свойства материала.
2 Буквенная маркировка нержавеющих сталей в странах СНГ
Антикоррозионные сплавы в ряде государств бывшего СССР маркируют буквами и цифрами. Под буквами закодированы химические элементы, входящие в состав стали, под цифрами – количественный состав этих самых элементов. В марках нержавеющей стали могут присутствовать далее указанные литеры:
- С – обозначение кремния, его вводят в сплавы для снижения вероятности образования окалины при выполнении их термообработки;
- Ю – под этой буквой «скрывается» алюминий, необходимый для того, чтобы нивелировать риск формирования посторонних включений в антикоррозионном сплаве при его контакте с кипящей водой и иными жидкостями, а также для стабилизации структуры металла;
- Х – кодировка хрома, который является главным химическим элементом нержавеющей стали, придающим ей стойкость к ржавлению;
- М – обозначение молибдена, в агрессивных атмосферах он обеспечивает устойчивость структуры сплава;
- С – так кодируется селен, отвечающий за полупроводниковые и термоэлектрические характеристики готовой металлургической продукции;
- Р – придающий металлам стойкость в термальным и сугубо химическим влияниям бор;
- К – необходимый для стабилизации углерода кобальт;
- П – фосфор, выполняющий функцию антикоррозионного пассиватора;
- Б – элемент ниобий, который вводят с целью активизации ферритных процессов внутри кристаллов (его используют исключительно в комбинации с углеродом);
- Ф – обозначение ванадия, обеспечивающего нержавейку пластичными свойствами.
Также маркировка нержавеющих сталей содержит и другие буквы. Углерод кодируется литерой У. Он, кстати, является главной составляющей любой современной стали, так как повышает ее сопротивляемость процессам окисления и обеспечивает ее требуемыми прочностными показателями. Под буквой Н «прячется» никель, благодаря которому нержавейка обретает стойкость к повышенным температурам, хорошую ковкость и прочность.
Медь маркируется литерой Д. Данный элемент повышает уровень антикоррозионной защиты сплавов, он предупреждает их усталость и гарантирует высокую прочность в течение длительного времени эксплуатации металлических изделий. Аналогом никеля является марганец (обозначается буквой Г), а ниобия – титан (буква Т в маркировке). Кроме того, в нержавейке нередко присутствует цирконий (Ц) и вольфрам (В). Последний из указанных элементов увеличивает температуру закалки металла и делает меньше величину его зерна.
3 Что означают цифры в маркировке нержавейки?
С буквами в марках антикоррозионных сплавов мы с вами, думается, разобрались. Теперь давайте определимся с цифрами, присутствующими в маркировке любой отечественной нержавеющей стали. Первая цифра (двузначная), стоящая в самом начале, указывает в десятых долях процента на количество углерода, присутствующего в сплаве.
После этого идет какая-либо литера, обозначающая легирующий элемент, и цифра, которая, опять-таки, указывает на его содержание в стальной композиции. Но в данном случае речь идет о содержании компонента в целых единицах, а не в долях процента. Отметим, что в тех сплавах, в которых легирующая добавка содержится в малом количестве (до полутора процентов), ее никак не отражают в маркировке.
Чтобы полностью понять принципы кодировки нержавейки, давайте возьмем для примера очень популярную антикоррозионную сталь 12Х18Н10Т и расшифруем ее:
- углерода в ней содержится 0,12 процентов (двухзначное число 12 в начале кодировки);
- хрома – 18 процентов;
- никеля – 10 процентов;
- титана – не более 1,5 процентов (какая-либо цифра после обозначения отсутствует, а значит, данного элемента в сплаве не может быть больше).
Аналогично вы можете расшифровать и любую другую марку. Так, в сплаве 04Х17Н13М2 имеется 0,04 % углерода, 17 хрома, 13 никеля и 2 молибдена. Стоит добавить, что в маркировке антикоррозионных металлических композиций высшего качества (не имеющих никаких посторонних добавок) в конце кода ставится литера Ш, а сплавов высокого качества – литера А.
Марки нержавеющей стали и их характеристики
Коррозионностойкими (нержавеющими) называют стали, которые, помимо железа, углерода и стандартных примесей, содержат легирующие элементы. Эти добавки придают устойчивость к коррозии – разрушению металла под влиянием негативных факторов (воздуха, воды, кислых и щелочных сред). Одна из опасностей коррозии – вероятность резкого ухудшения технических характеристик металла без внешних изменений. Основным компонентом в коррозионностойком сплаве является хром (содержание не менее 12%).
Для справки! Легирующие элементы служат для повышения устойчивости к появлению и развитию коррозии и улучшения других свойств:
- хром – твердости;
- титан и молибден – прочности;
- никель – прочности, пластических свойств;
- марганец – твердости, износостойкости, сопротивления ударным воздействиям.
Расшифровка марок
Маркировка легированных сталей состоит из букв и цифр. В начале ставится двузначное число, которое характеризует количество углерода в сотых долях %. Далее следуют буквы русского алфавита, обозначающие определенный элемент:
- Х – хром;
- Н – никель,
- Т – титан;
- В – вольфрам;
- Г – марганец;
- М – молибден;
- Д – медь.
После буквенного обозначения легирующего элемента в расшифровке идет число, обозначающее его содержание в нержавеющей стали, округленное до целого процента. Если такой цифры нет, то добавка в сплаве находится в пределах – 1-1,5 %.
Марки жаростойких и жаропрочных нержавеющих сталей
Жаростойкость, иначе называемая «окалиностойкость», – свойство металла противостоять газовой коррозии при высоких температурах в ненагруженном или малонагруженном состоянии.
Определение! Для повышения этой характеристики в состав сталей нержавеющих марок вводят хром, кремний и алюминий. Эти элементы, соединяясь с кислородом, образуют плотные структуры, повышающие устойчивость стали к температуре выше +550°C. Никель сам по себе на жаростойкость не влияет, но в сочетании с Cr, Al и Si повышает их эффективность.
Жаропрочные – это стали, которые функционируют при высоких температурах и нагрузках без склонности к кратковременной и длительной ползучести.
Таблица областей применения окалиностойких и жаропрочных сталей
Марки нержавеющей стали для изготовления дымоходов
При покупке модульных дымоходных систем необходимо узнать, из какой стали они изготовлены. В продаже можно встретить дымоходы, которые примерно в полтора раза дешевле, чем остальные изделия этой категории. При их производстве используется сталь AISI 201 (12Х15Г9НД). По международным стандартам, необходимо применять сталь марки AISI 321 (08Х18Н12Т), стоимость которой примерно в 2 раза превышает стоимость AISI 201. Визуально отличить AISI 201 от AISI 321 невозможно, к тому же оба сплава немагнитны. Различить их можно только путем проведения химического анализа.
Различия по химическому составу
Сталь марки AISI 201 имеет невысокие антикоррозионные характеристики, неустойчивость структуры, риск появления трещин при вытяжке. Ее применение приведет к скорому выходу дымохода из строя из-за быстро развивающейся коррозии. В основном эта сталь распространена в Китае и Индии.
Известные зарубежные и добросовестные российские производители, помимо стали AISI 321, используют высоколегированные сплавы, стабилизированные Ti. Они отличаются кислото- и жаростойкостью. Использование для газоотводящих труб более дешевых сталей (AISI 409, AISI 430), не отвечающих требованиям по кислотостойкости, приводит к их выходу из строя вскоре после начала отопительного сезона.
Нержавеющие стали для пищевой индустрии
Коррозионностойкие стали незаменимы для отраслей промышленности, производящих оборудование, инструменты и посуду, предназначенные для контакта с пищевой продукцией. Их преимущества:
- Сопротивление различным видам коррозии – химической и электрохимической. В каждом конкретном случае необходимо подбирать марки, устойчивые к средам, с которыми они будут соприкасаться во время эксплуатации. Это – нормальные атмосферные условия, вода, соленая вода, кислые, щелочные, хлористые растворы.
- Хорошая обрабатываемость. Современные инструменты позволяют сваривать, резать, формовать и обрабатывать на токарных, фрезерных и сверлильных станках коррозионностойкие сплавы так же, как и «черные» стали.
- Соответствие санитарно-гигиеническим стандартам. Благодаря различным способам обработки – шлифованию, полировке до зеркального блеска – получают поверхность практически без пор и трещин, в которые могут проникать грязь и патогенные микроорганизмы.
- Хорошие механические характеристики. Благодаря ним, можно изготавливать изделия и конструкции меньшей толщины и массы без ухудшения технических свойств. Аустенитные стали более устойчивы к низким температурам, по сравнению с металлами общего назначения.
- Эстетика. Электрополировка, сатинирование и другие способы поверхностной обработки обеспечивают стильный вид продукции из «нержавейки».
Таблица свойств и областей применения нержавеющих сталей пищевых марок
Нержавеющая сталь, общие понятия и обозначение
Завод нестандартного оборудования «Машинопромышленное объединение» производит емкости — резервуары различного назначения, в том числе из нержавеющей стали. В этой статье мы рассмотрим общее определение самого термина «нержавеющая сталь» или «нержавейка», опишем структуру маркировки и обозначения, а также классификацию нержавеющих сталей
Дадим общее определения понятия «нержавеющая сталь»
Что же такое «нержавеющая сталь»? Это специальный вид стали, в состав которой при производстве добавлены дополнительные вещества, для обеспечения требуемых физических или механических свойств. Эти вещества называются легирующими химическими элементами и вводятся в сталь или сплав в определенном количестве, массовая доля которых контролируется.
Добавка легирующих химических элементов повышает прочность, коррозийную стойкость стали, снижает опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.
Таким образом сталь, обычно называемая «нержавеющей» относится к группе легированных сталей. Основная цель введения легирующих добавок в нержавеющую сталь сделать ее коррозионно-стойкой, т.е. способной противостоять воздействию электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии и коррозии под напряжением. Основным легирующим элементом нержавеющей стали является хром (Cr).
Согласно новому ГОСТ 5632-2014 «Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки» к легированным нержавеющим следует относить стали с минимальной массовой долей хрома 10,5% и максимальной массовой долей углерода 1,2%. У ограниченного количества легированных нержавеющих сталей допускается минимальная массовая доля хрома 7,5%.
Вероятно это связано с тем, что ранее действующий стандарт ГОСТ 5632-72 «Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки» был менее требователен к минимальной массовой доле легирующих элементов.
Для усиления коррозионных свойств и придания необходимых физико-химических свойств нержавеющую сталь дополнительно легируют никелем (Ni), титаном (Ti), молибденом (Mo), ниобием (Nb) и другими элементами.
Обозначения нержавеющей стали
В наименованиях марок легированной и нержавеющей стали химические элементы, входящие в состав обозначены следующими буквами:
- А (в начале марки) — сера
- А (в середине марки) — азот
- Б — ниобий
- В — вольфрам
- Г — марганец
- Д — медь
- Е — селен
- К — кобальт
- М — молибден
- Н — никель
- П — фосфор
- Р — бор
- С — кремний
- Т — титан
- Ф — ванадий
- X — хром
- Ц — цирконий
- Ю — алюминий
- ч — РЗМ (редкоземельные металлы: лантан, празеодим, церий и пр.).
Наименование марок легированной и нержавеющей стали состоит из обозначения элементов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднюю массовую долю легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в стали в сотых долях процента.
Наименование марок сплавов на железоникелевой и никелевой основах состоит только из буквенных обозначений легирующих элементов, за исключением
- углерода (только для сплавов на железоникелевой основе), для которого цифры перед буквенным обозначением указывают среднюю или максимальную долю углерода в сотых долях процента;
- никеля, после которого указывают цифры, обозначающие его среднюю массовую долю в процентах.
Стали и сплавы, полученные с применением специальных методов (процессов) выплавки или специальных переплавов, дополнительно обозначают через дефис в конце наименования марки следующими буквами:
- В — с вакуумированием
- ВД — вакуумно-дуговой переплав
- ВИ — вакуумно-индукционная выплавка
- ВП — вакуумно-плазменный переплав
- ВО — вакуумно-кислородное рафинирование
- ГВР — газокислородное рафинирование с последующим вакуумно-кислородным рафинированием
- ГР — газокислородное рафинирование
- ДД — двойной вакуумно-дуговой переплав
- ИД — вакуумно-индукционная выплавка с последующим вакуумно-дуговым переплавом
- ИЛ — вакуумно-индукционная выплавка с последующим электронно-лучевым переплавом
- ИП — вакуумно-индукционная выплавка с последующим плазменно-дуговым переплавом
- ИШ — вакуумно-индукционная выплавка с последующим электрошлаковым переплавом
- П — плазменно-дуговой переплав
- ПД — плазменная выплавка с последующим вакуумно-дуговым переплавом
- ПЛ — плазменная выплавка с последующим электронно-лучевым переплавом
- ПП — плазменная выплавка с последующим плазменно-дуговым переплавом
- ПТ — плазменная выплавка
- ПШ — плазменная выплавка с последующим электрошлаковым переплавом
- СШ — обработка синтетическим шлаком
- Ш — электрошлаковый переплав
- ШД — электрошлаковый переплав с последующим вакуумно-дуговым переплавом
- ШЛ — электрошлаковый переплав с последующим электронно-лучевым переплавом
- ШП — электрошлаковый переплав с последующим плазменно-дуговым переплавом
- ЭЛ — электронно-лучевой переплав,
Классификация нержавеющих сталей
Легированные нержавеющие стали в зависимости от структуры подразделяют на классы:
- мартенситный — стали с основной структурой мартенсита;
- мартенсито-ферритный — стали, содержащие в структуре кроме мартенсита не менее 10% феррита;
- ферритный — стали, имеющие структуру феррита (без превращений);
- аустенито-мартенситный — стали, имеющие структуру аустенита и мартенсита, количество которых можно изменять в широких пределах;
- аустенито-ферритный — стали, имеющие структуру аустенита и феррита (феррит более 10%);
- аустенитный — стали, имеющие структуру устойчивого аустенита.
Подразделение стали на классы по структурным признакам является условным, так как предполагает только одну термическую обработку, а именно — охлаждение на воздухе после высокотемпературного нагрева (свыше 900°С) образцов небольших размеров. Поэтому структурные отклонения в стали браковочным признаком не являются.
В зависимости от основных свойств легированные нержавеющие стали можно разделить на три группы:
- Коррозионностойкие (нержавеющие) стали, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии и коррозии под напряжением в обычных промышленных и бытовых условиях. Из коррозионностойкой стали изготавливают детали оборудования для нефтегазовой, легкой, машиностроительной промышленности, хирургические инструменты, бытовую нержавеющую посуду и тару.
- Жаростойкие (окалиностойкие) стали, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии. Из жаростойкой стали производят оборудование для химических заводов.
- Жаропрочные стали, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.
В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу:
- сплавы на железоникелевой основе;
- сплавы на никелевой основе.
Сопротивление нержавеющей стали к коррозии напрямую зависит от содержания хрома: при его содержании 13 % и выше сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, более 17 % — коррозионностойкими в более агрессивных окислительных и других средах, в частности, в азотной кислоте крепостью до 50 %.
Причина коррозионной стойкости нержавеющей стали объясняется, главным образом, тем, что на поверхности хромсодержащей детали, контактирующей с агрессивной средой, образуется тонкая плёнка нерастворимых окислов, при этом большое значение имеет состояние поверхности материала, отсутствие внутренних напряжений и кристаллических дефектов.
В сильных кислотах (серной, соляной, фосфорной и их смесях) применяют сложнолегированные сплавы с высоким содержанием Ni и присадками Mo, Cu, Si.
Нержавеющая сталь прекрасный материал для производства прямоугольных пожарных резервуаров и пожарных емкостей, производство которых осуществляют специалисты завода нестандартного оборудования «Машинопромышленное объединение» как по стандартным типоразмерам так и по специальным проектам. Кроме изготовления емкостей наши специалисты произведут техническое диагностирование пожарных емкостей и резервуаров из нержавейки и определение технического состояния конструкций резервуара, определение пригодности его элементов к дальнейшей эксплуатации.