- Рентгеновский контроль сварных соединений
- Радиографический контроль: увидеть объект насквозь
- Технология проведения рентгеновского контроля сварных швов
- Сильные и слабые стороны рентген-контроля сварных швов
- Оборудование и материалы для рентгеновского контроля сварных соединений
- Обучение и аттестация специалистов радиографического контроля
- Радиографический контроль сварных швов и соединений
- Сущность метода
- Преимущества и недостатки
- Свойства и особенности рентгеновских лучей
- Устройство и принцип работы радиографического оборудования
- Требования к аппаратам
- Методика проведения радиографического контроля
- Техника безопасности
- Радиографический контроль сварных соединений
- Общая информация
- Принцип работы
- Особенности рентгеновских лучей
- Плюсы и минусы метода
- Методика контроля
- Техника безопасности
- Вместо заключения
- Рентгенографический контроль
- Возможности технологии
- Достоинства и недостатки
- Как это работает
- Некоторые особенности
- Важные моменты
- Нужно обеспечить безопасность
- Где можно применить?
- Рентгенографический контроль сварных соединений
- Свойства рентгеновских лучей
- Преимущества
- Недостатки
- Устройство и принцип работы оборудования
- Методика проведения контроля
- Меры по технике безопасности
Рентгеновский контроль сварных соединений
Радиографический контроль: увидеть объект насквозь
Для выявления подповерхностных дефектов радиографический контроль сварных соединений (РК, РГК) был и остаётся одним из наиболее надёжных и достоверных видов НК. Метод «эксплуатирует» проникающую способность рентгеновских лучей. Они по-разному поглощаются металлом и внутренними дефектами, и это отчётливо видно на рентгеновских снимках. По результатам их расшифровки стык можно смело признать годным либо забраковать.
Метод используется для наиболее ответственных объектов, включая магистральные и технологические нефте- и газопроводы, РВС, всевозможные сосуды, работающие под давлением, трубопроводную арматуру и пр. Рентген активно применяется в заводских лабораториях и службах ОТК на предприятиях по производству оборудования для атомных электростанций – насосов, корпусов и теплообменников парогенераторов, котлов и т.д. Метод успешно практикуется и в авиакосмической отрасли – для обследования ответственных деталей из композитов.
Технология проведения рентгеновского контроля сварных швов
Сильные и слабые стороны рентген-контроля сварных швов
Однако при всех своих достоинствах радиографический контроль сварных соединений не идеален. Прежде всего, согласно п. 1.3 ГОСТ 7512-82, данный способ не предназначен для выявления:
- несплошностей и включений, размер которых в направлении просвечивания меньше, чем удвоенная чувствительность контроля;
- непроваров и трещин с плоскостью раскрытия, отличающейся от направления просвечивания. При этом величина их раскрытия ниже, чем нормированное значение. Для каждой радиационной толщины оно своё – и может составлять 0,1–0,5 мм;
- любых несплошностей и включений, изображение которых на снимке «накладывается» на изображение посторонних деталей либо места резкого изменения толщины металла.
На этом недостатки не заканчиваются. Рентген не совершенен ещё и потому, что:
- основан на использовании рентгеновского излучения – опасного для человеческого здоровья и окружающей среды. Отчасти это проблема компенсируется дополнительными выплатами для персонала, ранним выходом на пенсию и прочими льготами. Во избежание несчастных случаев перед проведением РК рабочую зону огораживают при помощи ленты. Дополнительно используются сигнальные огни для предупреждения посторонних лиц;
- связан с трудоёмкой фотохимической обработкой снимков. Этот пункт актуален только для традиционного радиографического контроля, построенного на плёночных технологиях. В цифровой радиографии всё проще и быстрее. Но этот способ пока только набирает популярность. ГОСТ Р 50.05.07-2018, например, строго предписывает использование плёнок. А это значит, что нужно разбираться в проявке, знать и соблюдать правила работы с реактивами, решать проблему утилизации отходов и т.д. Всё это создаёт дополнительные требования к персоналу;
- требует оформления лицензии на работу с ИИИ, санитарно-эпидемиологического заключения и иных разрешительных документов;
- предполагает существенные затраты. Стоимость рентген-аппаратов достигает несколько миллионов рублей, не говоря о дополнительном оборудовании и постоянной потребности в расходниках (об этом ниже). Правда, цифры здесь относительны, так как проведение РК позволяет избежать по-настоящему страшных аварий, ущерб от которых нельзя оценить никакими деньгами. Как пример – просвечивание швов обечайки реакторной установки на АЭС.
Оборудование и материалы для рентгеновского контроля сварных соединений
Традиционный радиографический метод контроля сварных соединений нуждается и в большом количестве расходных материалов. К таковым относятся форматные и рулонные рентгеновские плёнки, реагенты (проявитель, фиксаж, стартер, концентраты для очистки проявочной техники), флюоресцентные и свинцовые усиливающие экраны. Резку плёнок осуществляют при помощи специальных резаков.
Отдельную категорию принадлежностей составляют аксессуары, задача которых в том, чтобы упростить расшифровку и сделать её более точной. Так, в лабораториях РГК очень востребованы:
- трафареты (мерные шаблоны). Это прозрачные плёнки, на которые нанесены линейки и прочая вспомогательная разметка. С такими трафаретами намного легче измерять выявленные трещины, поры и другие дефекты;
- меры оптической плотности. Представляют собой фрагменты рентгеновской плёнки различной оптической плотности. Используются для настройки денситометра и визуального сравнения с имеющимся снимком;
- универсальные шаблоны радиографа. Более «продвинутая» версия трафаретов с дополнительными разметками, маркерами и иными вспомогательными изображениями. При наличии УШР гораздо проще определять вид дефектов, их диаметр, протяжённость, глубину и др.
Обучение и аттестация специалистов радиографического контроля
Проводить радиографический контроль сварных швов с оформлением заключений могут только аттестованные лаборатории аттестованные и/или сертифицированные специалисты по ПБ 03-440-02, ISO 9712, ISO 17024 и др. Для аттестации на I и II уровень необходимо иметь среднее или высшее техническое образование какого-либо инженерного вуза либо университета. Дополнительно нужно пройти специализированные курсы по программе, согласованной с Независимым органом по аттестации персонала. Для кандидатов на присвоение II квалификационного уровня вместо этого могут зачесть опыт работы по НК с составлением методических документов.
Подготовка соискателей для допуска к квалификационным экзаменам по радиографическому контролю должна занимать не менее 40 (для I уровня) или 80 (для II уровня) часов. Производственный опыт должен быть не менее 6 месяцев (для кандидатов на I уровень), 12 месяцев либо 18 месяцев – для кандидатов, имеющих или не имеющих I уровень соответственно.
Что касается III уровня, то для его получения кандидату нужно иметь II уровень (либо успешно сдать практический экзамен на него), среднее либо высшее техническое образование. В зависимости от этих условий производственный опыт должен составлять не менее 24–72 месяцев.
На форуме «Дефектоскопист.ру» доступны статьи, живые обсуждения, библиография, база нормативной документации и много другой полезной информации для начинающих и состоявшихся специалистов РК. Чтобы стать настоящим профессионалом радиографического контроля, присоединяйтесь к нашему сообществу.
Радиографический контроль сварных швов и соединений
Среди методов неразрушающей диагностики, лучевой – наиболее точный. Аппаратурой радиографического контроля сварных соединений можно обнаружить внутренние дефекты металла: непровары, микротрещины в зоне термовлияния, раковины, шлаковые включения. Рентгеноскопия необходима при монтаже трубопроводов, производстве опорных каркасов, сварных деталей, работающих на излом. Процедура испытаний регламентирована ГОСТ 7512-86. Данные заносятся в специальные журналы. Применение рентгенографического контроля сопряжено с вредным лучевым воздействием на операторов. Для них разработаны правила техники безопасности.
Сущность метода
Главная цель контроля – выявление несплошностей, способных стать причиной аварии. В основе радиографического метода контроля сварных соединений лежит способность гамма-лучей, рентгеновского излучения рассеиваться при прохождении разнородных сред. По снимку определяют место дефекта, его размеры. Рентгеновский контроль дает качественный и количественный результат.
Диагностический диапазон ограничен чувствительностью радиографического прибора для проверки сварных соединений.
Дефектоскоп НЕ выявляет:
- пустоты размером меньше стандартных значений на 50%, параллельных направлению луча;
- несплошности, инородные включения, меньше двух значений чувствительности, расположенные по направлению пучка;
- включения и трещины, на изображении совпадающие с гранями, острыми углами проверяемой детали.
Все остальные дефекты лучевая радиографическая диагностика распознает. Раковины, трещины, шлак, непровары хорошо видны на экране прибора или снимке. При прохождении зоны сварного соединения лучи не изменяют направление, если металл однородный. На границе разделения сред часть лучей отражаются, рассеиваются, на картинке появляются затемненные участки.
Преимущества и недостатки
Современная радиография остается приемлемым и востребованным методом неразрушающего контроля. Плюсы метода:
- за долю минуты дает представление о качестве соединений, полученных любой сваркой (ручной электродуговой, газовой, точечной, радиальной и другими видами);
- по точности результатов радиографическая диагностика превосходит другие методы неразрушающего контроля сварных соединений;
- прибор выявляет широкий спектр структурных изменений в металле;
- на картинке видно место расположения дефекта, его тип, размеры;
- радиографический метод применим для полевых работ: проверки трубопроводов, строительных объектов.
У радиографического метода диагностики сварных соединений имеются недостатки:
- рентгенография невозможна без специальных приборов, это дорогое оборудование;
- в качестве расходника используется светочувствительная пленка или пластинки;
- для диагностики необходимо длительно обучать контролеров, они сдают экзамены в контролирующих организациях;
- качество контроля зависит от умелой настройки диагностического оборудования;
- изотопное гамма-излучение и рентгеновские лучи опасны для здоровья.
По точности результатов радиографическая диагностика превосходит другие методы неразрушающего контроля сварных соединений, однако необходимо дорогостоящее оборудование и хорошо обученные контролеры.
Свойства и особенности рентгеновских лучей
Проходимость материалов зависит от длины генерируемых лучей. Рентгеновский поток при прохождении плотных структур поглощается: лучи рассеиваются в пространстве. Чем ниже плотность проверяемых сварных соединений трубопроводов, металлоконструкций или деталей, тем четче получаемое радиографическое изображение. Пустоты, раковины на снимке буду темнее.
Картинка получается благодаря способности некоторых химических реагентов светиться под действием излучения. Они сохраняют эту способность несколько секунд. Этого достаточно, чтобы светочувствительная пленка засветилась.
В процессе рентген-контроля сварных швов выявляются участки разной плотности. Если металл однородный – снимок будет светлым, однотонным. При пустотах появятся затемнения.
Действие некоторых дефектоскопов основано на способности ионизированного воздуха пропускать электрический ток. Проводимость напрямую зависит от степени ионизации. Лучи расщепляют молекулы на своем пути, превращают их в коктейль анионов и катионов. Применение этого свойства помогает получать изображение на осциллографе.
Устройство и принцип работы радиографического оборудования
В любом приборе, используемом для радиографического контроля сварных соединений, имеется излучатель. Он генерирует излучение необходимой частоты, длины. Это – сердце дефектоскопа.
Рентгенографический излучатель представляет собой колбу с откаченным воздухом, в которой расположены анод, катод, элемент накала. Во время разгона электронов возникают лучи. Они образуют направленный пучок. Он пропускается сквозь толщу сварного соединения.
Другая важная часть оборудования для радиографического контроля – фотодиод. Он преобразует энергию лучей в световую энергию. В радиографических приборах, контролирующих качество сварного соединения, устанавливают блоки детекторов, создающих изображение.
Световой сигнал можно преобразовать в цифровой формат, информация поступает в накопитель. На экране данные отображаются в виде полутоновой картинки.
Требования к аппаратам
Рентгеноконтроль сварочных швов зависит от нескольких факторов:
- интенсивности пропускаемого потока, чтобы с учетом рассеивания получалось четкое изображение;
- генератор должен работать с одинаковой мощностью на протяжении исследования, только при этом условии показания будут достоверными;
- требуется высокая чувствительность элемента, улавливающего световой сигнал, иначе картинка будет смазанной;
- способность прибора улавливать дефекты определяется минимальными размерами распознаваемого объекта, от размера пустот или включений напрямую зависит прочность сварного соединения.
Для радиографического контроля используют приборы различных типов, марок. Их подбирают в зависимости от толщины проверяемого металла, химического состава, предполагаемой зернистости.
Методика проведения радиографического контроля
Проверка проводится на подготовленных соединениях. Их предварительно очищают от окалины, плотных окислов, зачищают до металлического блеска. От качества подготовки поверхности во многом зависит точность полученных результатов.
Процесс радиографического контроля сварных швов состоит из нескольких этапов:
- прибор устанавливают так, чтобы с одной стороны проверяемой зоны находился излучатель, с другой – датчик (при использовании любых видов дефектоскопов проверяемый металл всегда находится между двумя частями приборов);
- на 10-20 минут включается электропитание, за это время пучок пронизывает сварной валик, поступает на датчик (дефектоскопы работают от сети или на аккумуляторах);
- датчик подает сигнал на преобразователь, в итоге получается картинка на пленке, пластинке или экране прибора (вид изображения зависит от марки используемого радиографического прибора для контроля сварных швов);
- цифровой аналоговый сигнал записывается в накопитель информации.
В течение небольшого промежутка времени контролер получает изображение. Он расшифровывает его, фиксирует обнаруженные дефекты в специальном журнале. Иногда контролер только делает снимки, расшифровывает их другой специалист.
Техника безопасности
При радиографическом или рентгенографическом контроле сварных соединений важно соблюдать меры предосторожности. Лучевой поток легко проникает в ткани, облучает их в доли секунды. При большой дозе оказывает поражающее действие. Во время пользования прибором контроля необходимо это учитывать.
Основные рекомендации контролерам:
- необходимо экранировать оборудование, для этого используют свинцовые пластины;
- излучатель желательно располагать как можно дальше от людей;
- обязательно должен вестись учет времени пребывания в зоне риска;
- в зоне излучателя возможна ионизация воздуха, необходимо убрать электрооборудование.
Радиографический метод контроля сварных соединений в минимальных дозах не опасен. Оказывает минимальное воздействие на человека. Если соблюдать ТБ, можно минимизировать риск облучения контролера.
Радиографическая диагностика швов – современный и точный метод определения дефектов. Производители выпускают компактные модели приборов с различной мощностью лучевого потока. Можно выбрать необходимое диагностическое оборудование. Для специализированных компаний лучевой контроль стал стабильным источником доходов. Услуги востребованы.
Радиографический контроль сварных соединений
При соединении металлов с помощью сварки у неопытных мастеров могут возникнуть трудности. В частности, они могут просто не увидеть всех дефектов сварного шва, которые образовались из-за ошибок сварщика. Визуального контроля недостаточно, чтобы выявить скрытые недочеты. И если в условиях домашней сварки это не критично, то на крупном производстве бракованные изделия лишают прибыли.
Существует множество видов контроля сварных швов. От визуального, когда сварщик просто осматривает шов на предмет видимых дефектов, до передовых способов, для которых необходимо специальное оборудование. Об одном из таких способов мы и хотим вам рассказать. В этой статье вы узнаете, что такое радиографический контроль сварных соединений и какова его методика.
Общая информация
Радиографический метод контроля сварных соединений (также рентгенография, рентгеноскопия, рентгенографический контроль) — метод контроля качества с применением рентгеновских лучей. Специальный аппарат устанавливает на место сварного шва. Здесь все по аналогии с рентген аппаратом для снимков костей человека. Рентгеновские лучи пронизывают металл и в случае обнаружения внутренних дефектов легко выходят наружу. Ну а если структура шва плотная и не имеет дефектов, то луч просто не пройдет.
Специальное устройство регистрирует прохождение лучей и делает снимок. На снимке без проблем можно обнаружить наличие дефектов, их размеры и точное расположение. Рентгеновский контроль сварных соединений — это один из наиболее точных методов контроля качества швов. Его часто используют при проверке трубопровода, ответственных изделий, металлоконструкций, к которым предъявлены повышенные требования качества. Особенно заметна популярность радиографического контроля в строительной сфере.
Принцип работы
«Сердцем» рентгеновского аппарата является излучатель, который генерирует и выпускает лучи. Излучатель представляет собой вакуумный сосуд, который содержит анод, катод и его накал. Все эти частицы заряжены и являются электродами. Во время их сильного ускорения как раз и образуются рентгеновские лучи. Это простейшее объяснение.
Для интересующихся объясним подробнее. Катод испускает электроны, которые ускоряются от электрического потенциала, образующегося между анодом и катодом. В этот момент рентгеновские лучи уже начинают образовываться, но их недостаточно. Однако, лучи все же сталкиваются с анодом и начинается их торможение. Из-за этого лучи начинают генерироваться сильнее. В тот же момент из-за столкновения начинают появляться электроны анода. Так образуются лучи, достаточные для формирования полноценного излучения.
Далее лучи выходят и пускаются в заданном направлении. Лучи сталкиваются с металлом и в случае наличия дефектов проходят сквозь него. Либо поглощаются металлом, если дефектов нет. Здесь нужно уточнить, что лучи поглощаются не полностью, некоторые частицы все же остаются. Именно они попадают на пленку и позволяют сделать снимок. На снимке фиксируется количество лучей, прошедших сквозь металл. Если дефектов много, то и лучей тоже будет много. За счет такой особенности и получается узнать размер дефекта и его расположение.
Особенности рентгеновских лучей
Чтобы лучше понять суть рентгенографии нужно разобраться с особенностями самих лучей, благодаря которым как раз и возможен контроль. Лучи обладают свойствами, которые позволяют им проходить сквозь материалы. В нашем случае металл. Чем выше плотность металла, тем хуже проходят лучи. И, соответственно, чем ниже плотность металла, тем лучше они проходят. Здесь все просто: наименьшая плотность присутствует как раз в местах с дефектами.
Поэтому лучи беспрепятственно проходят сквозь металл и это фиксируется на специальном устройстве. Ну а если у шва нет дефектов и структура плотная, то лучи не пройдут, а просто поглотятся металлом. И чем выше плотность, тем больше степень поглощения.
Что касается снимков, то здесь тоже все просто. Существуют химические вещества, которые при контакте с рентгеновским излучением начинают буквально «светиться». Такими веществами покрывается светочувствительная часть фотопластинки, на которой затем появится снимок. Этот принцип является основой для создания рентгеновских снимков сварных швов.
Теперь о некоторых других особенностях. Наверняка вы слышали, что рентгеновское излучение в большом количестве может пагубно влиять на здоровье человека. Это правда. Лучи легко воздействуют на ткани и клетки, облучая их за считанные минуты. В больших дозах это может привести к лучевой болезни. Так что нужно соблюдать осторожность, если вы используете радиографический метод контроля сварных соединений.
Еще один интересный факт: благодаря излучения привычный нам воздух способен проводить электрический ток. Это связано с тем, что рентгеновские лучи ионизируют воздух и расщепляют его частицы на небольшие составляющие, которые в свою очередь имеют электрический заряд.
Плюсы и минусы метода
- Рентгенографический контроль сварных соединений — один из самых достоверных методов контроля качества швов.
- С помощью этого метода за считанные минуты выявляются дефекты любого уровня.
- Есть возможность определить точный размер и расположение дефекта.
- Контроль занимает мало времени и требует только рентген-аппарат.
- Возможен контроль сварных соединений трубопроводов и любых других сложных систем.
- Качество контроля напрямую зависит от настройки рентген-аппарата.
- Современные рентген-аппараты стоят дорого, особенно компактные модели, которые так популярны в строительной сфере.
- Для работы понадобится специальная светочувствительная пленка, которая также стоит недешево.
- Этот метод контроля сварных швов сопряжен с опасностью для здоровья.
Методика контроля
Методика радиографического контроля проста и во многом схожа с обычной рентгенографией, которую мы делаем в поликлинике. Сначала контролер или ответственное лицо устанавливает необходимые настройки аппарата, учитывая плотность металла. Помните, что именно плотность влияет на конечный результат.
Далее подготавливается сварное соединение. Нужно удалить шлак, обработать валик шва и зачистить металл. Затем либо деталь помещается в аппарат (если контроль стационарный в отдельной комнате), либо аппарат помещается на соединение (если контроль выездной и используются компактные модели). Шов должен находиться между излучателем и пленкой. Излучатель включается, лучи проходят сквозь металл и попадают на пленку. Мы получаем снимок, на котором видны все дефекты. Теперь можно выключить аппарат и подождать 10-20 секунд. Затем деталь извлекается из ренигенографа (или рентгенограф снимается с металла). Снимки отдаются специалисту для их изучения или остаются у контролера.
Техника безопасности
Как мы уже говорили, данный метод контроля сопряжен с некоторой опасностью для здоровья. Не нужно пренебрегать этим, думая, что небольшие дозы радиации не повлияют на вас. Если вы работаете контролером и постоянно имеете дело с рентгенографией, то соблюдайте следующие рекомендации.
Во-первых, самое главное правило при работе с рентгеном — нужно экранировать прибор. Это не даст лучам распространяться за пределы зоны контроля. Для этих целей можно использовать металлические листы. Если вы работаете в помещении, то его стены также должны быть оборудованы экранирующими пластинами. Так лучи не будут представлять опасности для других работников, находящихся на объекте или в цеху.
Во-вторых, постарайтесь как можно меньше времени проводить рядом с аппаратом. Если вы проводите радиографический метод контроля сварных соединений на улице, то лучше отойдите в сторону. Если вы работаете в помещении, то постарайтесь сократить время своего пребывания в нем. Также на вас должны быть средства индивидуальной защиты. В помещении и рядом с аппаратом на улице не должны проходить посторонние работники.
В-третьих, перед началом работ нужно убедиться, что аппарат работает исправно и все настройки выставлены правильно. Большинство несчастных случаев связаны именно с неправильной настройкой или неисправностью рентгена.
В-четвертых, следите за дозой лучей, которые вы получаете при каждом контроле. Да, небольшие дозы не вредны для здоровья, но они обладают свойством накапливания и в конечном итоге могут стать причиной серьезных заболеваний. Следите, чтобы полученная вами доза радиации успевала выводиться из организма до начала следующего контроля. Чтобы узнать дозу можно использовать дозиметр.
В-пятых, не забывайте, что из-за лучей воздух может сильно ионизироваться, что приведет к образованию электрического тока. Следите за допустимым значением ионизации воздуха, особенно, если работаете в закрытом помещении.
Вместо заключения
Вот и все, что мы хотели рассказать вам о рентгенографическом методе контроля. Это один из самых точных и достоверных способов выявить скрытые от глаз дефекты. С его помощью можно провести контроль как на производстве, так и на выезде, поскольку производители предлагают компактные модели. Их легко можно взять с собой и выполнять контроль даже под открытым небом.
Конечно, радиографический контроль сварных соединений требует определенных знаний и опыта, чтобы читать снимки. Но вместе с тем вы получаете навык, который поможет вам безошибочно выявлять дефекты даже в идеальных на вид швах. А вы использовали в работе рентгенограф? Поделитесь в комментариях своим опытом контроля качества швов с помощью данного прибора, это будет полезно для наших читателей. Желаем удачи в работе!
Рентгенографический контроль
Являясь фактически одной из разновидностей радиографического контроля, этот метод не требует применения используемых в гамма-дефектоскопах радиоактивных изотопов. Источником излучения в этом случае являются рентгеновские лампы. Генерируемые лампой лучи проходят через обследуемый участок детали. При этом они интенсивнее поглощаются однородным металлом, а при прохождении сквозь пустоты, трещины или просто рыхлый металл, интенсивность поглощения снижается. Основываясь на этом эффекте, на различных светочувствительных материалах – бумаге, плёнке, пластиковых или стеклянных пластинах, получают изображение, где места дефекта выглядят более светлыми. Это позволяет зафиксировать результаты обследования документально. Если же применить специальный преобразователь излучения, то результаты дефектоскопии можно вывести на экран и, по полученному изображению, исследовать в реальном времени.
Возможности технологии
Используя рентгеновский контроль, удаётся с высокой степенью точности выявить:
- Плохо проваренные места соединительных швов.
- Трещины и каверны, причём даже те, которые находятся под поверхностью детали и не обнаруживаются другими методами дефектоскопии.
- Включения инородных материалов – шлаков, окислов и т. п.
Также появляется возможность оценить вогнутость и выпуклость корня сварного шва.
Впрочем, с помощью прогрессивной технологии контроля удаётся обследовать не только детали, изготовленные из металла. Изменение интенсивности рентгеновского излучения регистрируется при его прохождении через минералы и полимеры, органические и неорганические вещества. Таким образом, значительно расширяется область применения рентгенографического контроля.
Достоинства и недостатки
Любым технологиям присущи как достоинства, так и недостатки. Именно они влияют на их развитие в первую очередь. Оценивая метод дефектоскопии, использующий рентгеновское излучение, к его достоинствам можно отнести:
- Высокую точность получаемых данных. По этому параметру соперничать с рентгенографией очень трудно. Ведь с её помощью удаётся обнаружить не только дефекты микроскопического размера, но также определить форму и характер повреждения.
- Возможность выявления скрытых дефектов, вне зависимости от глубины их расположения. При использовании большинства других способов контроля такая задача невыполнима.
- Достаточно высокая скорость получения результатов, благодаря которой становится возможным использование технологии в массовом производстве и при изучении сварных швов большой суммарной протяжённости.
Что касается основных недостатков, то ими принято считать:
- Значительную стоимость оборудования и сложность его обслуживания.
- Опасность для здоровья, которую может представлять метод рентгеновского контроля при нарушении норм безопасности и неграмотном его использовании.
- Необходимость в специальных расходных материалах для фиксации результатов.
- Наличие способного работать на сложном оборудовании квалифицированного персонала, поскольку эффективность метода напрямую зависит от правильности его применения.
- Влияние заданных параметров регулировки измерительной аппаратуры на точность результатов.
Как можно понять, недостатки являются хотя и сложными, но преодолимыми, а значит, не мешают внедрению рентгеновской дефектоскопии там, где в ней существует необходимость.
Как это работает
Очевидно, что для оценки возможностей технологии и особенностей её применения, желательно знать её основные принципы. В основе процесса – рентгеновское излучение, открытое ещё в 1895 году Вильгельмом Конрадом Рентгеном. Мог ли знать проводивший эксперименты знаменитый учёный, во скольких областях человеческой деятельности благодаря его открытию произойдут изменения?!
Во всех аппаратах, использующих описываемый принцип дефектоскопии, источником регистрируемого излучения служат рентгеновские трубки. Характеристики этих трубок влияют на возможности аппаратуры и результаты замеров. Максимальная толщина металла, которую способен просветить рентгеновский аппарат, напрямую зависит от излучения, жёсткость которого, в свою очередь, связана с параметрами подаваемого на трубку тока. По используемому напряжению оборудование делят на три основные группы.
- Малого, в пределах от 60 до 120 кВ.
- Среднего, от 200 до 400 кВ.
- Высокого, от 1 до 2 МэВ, напряжения.
Если первые два типа удаётся сделать переносными, то последний может быть либо передвижным (установленным на самоходное или буксируемое шасси), либо стационарным.
Рентгеновские трубки высокого напряжения могут быть использованы для выявления дефектов в деталях, изготовленных из стали толщиной до 500 мм.
Благодаря особенностям конструкции рентгеновской трубки, предусмотрена возможность регулировки размеров фокусного пятна. Излучатель помещается внутрь специальной защитной капсулы, имеющей отверстие или прорезь, сквозь которые лучи направляют на исследуемый участок. В некоторых конструкциях аппаратов пятно фокусируется с помощью дополнительных линз.
Прошедшее сквозь материал излучение попадает на светочувствительный материал, оставляя на нём отпечаток, подобный тому, какие получаются при использовании технологии классической фотографии. В случаях, когда существует необходимость непрерывно получать данные в реальном времени, прибегают к использованию так называемых сцинтилляторов. Эти вещества обладают способностью преобразовывать невидимое жёсткое излучение в свет, видимый человеческому глазу, благодаря чему появляется возможность задействовать специальный преобразователь и вывести изображение на экран. Работающие по такому принципу установки иногда называют рентгенотелевизионными.
Некоторые особенности
В зависимости от устройства трубки аппараты делят на импульсные, в которых поток излучения выдаётся сжатыми порциями, и постоянного действия, где излучение идёт непрерывно. Ввиду того что при создании короткого импульса удаётся повысить пиковые значения излучателя без существенного увеличения его размеров и параметров напряжения, в последнее время именно таким аппаратам отдаётся предпочтение.
Важные моменты
В любом случае на конечные результаты проводимых замеров влияют несколько основных факторов.
- Стабильность характеристик подаваемого напряжения.
- Точные геометрические параметры контроля.
- Регулировка размеров фокусного пятна.
- Фокусное расстояние между дефектоскопируемым объектом и преобразователем излучения.
Согласно требованиям ГОСТ 7512-86, распространяющим своё действие на методы РК контроля, для каждого обследуемого изделия должна быть разработана технологическая карта. Это важно, поскольку свою эффективность рентгеновский контроль демонстрирует только при полном соблюдении всех нормативов.
Нужно обеспечить безопасность
На участке производства, где используется полезная, но всё же опасная технология, существует очевидная необходимость в строжайшем соблюдении норм техники безопасности. Ведь полученное даже в малых дозах, жёсткое излучение накапливается в организме и способно нанести непоправимый вред здоровью. Чтобы этого не случилось, следует выполнять следующие правила.
- При проведении замеров недопустимо присутствие на участке работ посторонних лиц. Даже допуск людей к прошедшим дефектоскопию деталям на какое-то время следует ограничить.
- Всё излучающее оборудование должно быть надёжно защищено специальными экранами. В качестве материала для таких экранов может быть использован свинец, или иные вещества, поглощающие жёсткое излучение.
- Управляющий процессом оператор должен быть максимально удалён от излучателя, а его рабочее место также защищено поглощающими экранами.
- При необходимости посещения зоны повышенной опасности сотрудники должны быть обеспечены надёжными средствами индивидуальной защиты. Время их пребывания рядом с излучателем следует свести к минимуму.
Недопустимо использование неисправных рентгенографических установок. Ремонт оборудования должен производиться только квалифицированными специалистами, имеющими соответствующий допуск. Совершенно очевидно, что применять технологию в домашних условиях не стоит.
Попытки изготовить оборудование самостоятельно, а тем более выполнить с его помощью необходимые замеры, почти наверняка приведут к тяжелейшим последствиям для здоровья оказавшихся рядом людей. К счастью, в этом нет необходимости. Промышленность выпускает в достаточном количестве эффективные и вполне надёжные приборы, способные обеспечить точный рентгенконтроль. Нужно лишь правильно выбрать устройство, возможности которого соответствуют намеченным задачам.
Где можно применить?
При правильном подходе и соблюдении всех требований, технология безопасна и весьма эффективна. Она постепенно вытесняет устаревшие методы и всё чаще рентгенографические установки можно встретить в самых разных местах.
- На строительстве новых или обслуживании уже находившихся в эксплуатации трубопроводов. Ведь это один из самых удобных способов проверки надёжности сварных соединений и герметичности трасс, по которым перекачиваются различные химические вещества.
- В местах возведения многоэтажных зданий, от прочности несущего каркаса которых будут зависеть жизни огромного количества людей. Чтобы исключить ненужные риски, стоит проверить качество сварных швов заблаговременно.
- На судостроительных верфях, де строятся огромные грузовые суда или фешенебельные пассажирские лайнеры. Лишь надёжным сварным соединениям не страшны шторма.
- В цехах, где собирают на стапелях самые современные самолёты, и даже ракеты. Подняться в небо или достигнуть звёзд они смогут лишь в том случае, если их сварные швы не имеют дефектов.
- У сборочных конвейеров, с которых сходят новейшие модели автомобилей. Количество звёзд, заработанных на краш-тестах, зависит от многих факторов. В том числе и от хорошо выполненной дефектоскопии.
Безусловно, это далеко не весь перечень возможностей рентгенографического контроля. Ведь подробное перечисление заняло бы не одну страницу. Вполне возможно, что именно сейчас кто-то придумал, как ещё можно использовать эту имеющую широкие возможности технологию.
Рентгенографический контроль сварных соединений
Во время соединения металлических деталей с помощью сварки может возникнуть ситуация, которая затруднит образование нормального однородного шва. Когда в сварочную ванну попадают посторонние предметы или элементы, а также выбран неправильный режим сваривания, то вполне возможно образование брака. Это приводит к тому, что шов будет иметь более низкое качество и сможет выдержать меньшее количество нагрузок, чем предполагалось. Далеко не все виды дефектов можно увидеть сразу, так как зачастую они имеют скрытый характер. В особенности это относится к мелким трещинам и порам. Требования к сварным соединениям здесь могут быть очень высокими, так что любой недочет может привести к серьезным последствиям.
Рентгенографический контроль сварных соединений
Рентгенографический метод контроля сварных соединений это один из самых достоверных способов. Данный метод особенно популярен при проверке соединений технологических трубопроводов, различного ответственного оборудования, металлических конструкций и прочих материалов, применяющихся в самых разнообразных отраслях. Чаще всего высокие нагрузки встречаются в строительстве. Рентген контроль сварных соединений проводится по ГОСТ 7512-86.
Данный принцип основан на поглощении лучей плотными средами. Чем более плотная структура, тем меньше лучей пройдет наружу. Если внутри шва есть трещины, раковины, поры и прочие полые дефекты, то количество прохождения лучей здесь будет значительно большим. Регистрирующее устройство сможет выявить наличие дефекта, его размер, место расположения и другие особенности. Такими качествами не обладает ни один другой метод. Рентгеновский контроль сварных соединений является детальным показателем состояния локальных участков металлоконструкций
Свойства рентгеновских лучей 
Лучи могут проходить через плотные непрозрачные тела, но чем выше плотность этих тел, тем ниже пропускание лучей. Проходимость зависит и от длины лучей. При большой длине им сложнее пройти сквозь плотные поверхности. Во время прохождения лучи поглощаются той поверхностью, с которой соприкасаются. Чем выше плотность, тем больше поглощение.
Принцип рентгенографическогой контроля сварных швов
Некоторые химические вещества при контакте с излучением получают видимое свечение. После окончания воздействия свечение прекращается, но некоторые вещества сохраняют заряд свечения еще на некоторое время. Это свойство является основой для создания рентгеновских снимков в данном методе. Воздействие лучей на светочувствительную часть фотопластинок создает изображение внутреннего состояния шва.
При воздействии лучей на клетки организма они производят определенные воздействия, которые зависят от типа ткани и интенсивности полученной дозы. Это может использоваться в медицине, но также имеет и обратный эффект, который проявляется в лучевой болезни.
Лучи могут ионизировать воздух, расщепляя составные части воздушной массы на отдельные частицы, имеющие электрический заряд. Из-за этого воздух может проводить электричество.
Преимущества 
- Рентгенографический контроль сварных соединений трубопроводов является одним из самых точных и надежных методов дефектоскопии;
- Можно увидеть скрытые дефекты;
- Возможно определение абсолютных и относительных размеров бракованного места;
- Скорость проведения процедур достаточно высокая.
Недостатки 
- Эффективность метода зависит от правильности установки параметров;
- Оборудование для его проведения имеет высокую стоимость;
- Здесь нужно использовать особую пленку для фиксации результата;
- Это опасный для здоровья метод дефектоскопии сварных швов.
Устройство и принцип работы оборудования 
Излучающий элемент представлен в виде вакуумного сосуда, в котором находится три электрода: анод, накал катода и катод. Сами рентгеновские лучи возникают тога, когда заряженные частицы получают сильное ускорение. Это может случиться и при высокоэнергетическом переходе, что происходит в оболочке атомов. Рентгенографические трубки используют оба этих варианта. Основным конструктивным элементом устройства выступает анод и катод.
Устройство для рентгенографическогой контроля сварных соединений
Электроны, которые испускаются катодом получают ускорение от различных электрических потенциалов, находящихся в области между анодом и катодом. В это время рентгеновские лучи еще не испускаются, по причине малого своего количества. Они ударяются об анод, после чего происходит их резкое торможение. За счет этого происходит генерация лучей в рентгеновском диапазоне. В это же время из внутренних оболочек атомов анода выбиваются электроны. На места выбитых частиц становятся другие электроны. Выпускаемое излучение приобретает характерные черты, которыми обладает материал анода.
Когда лучи уже вышли, то они передвигаются в соответствии с заданным направлением сквозь выбранный участок шва. Затем они сталкиваются с плотной поверхностью и часть остается в металле. Остальные частицы, которым удалось прорваться, попадают на пленку. Там отображается интенсивность излучения в каждом отдельном месте. При наличии пустых мест в структуре наплавленного металла, количество лучей становится большим. Таким образом можно выявить где находится тот или иной дефект, а также какой он формы и размера.
Методика проведения контроля 
Методика проведения рентгенографического контроля сварных соединений очень схожа с радиографическим контролем. Первым делом происходит настройка аппаратуры под определенную плотность металла, чтобы излучение смогло пройти сквозь его поверхность. Затем происходит подготовка сделанного шва к контролю. Для этого с него оббивают шлак, обрабатывают до требуемой высоты валика и зачищают саму поверхность.
После этого изделие перемещается в аппарат на то место, где будет происходить выпуск лучей. Оно должно находиться между излучателей и фотопленкой. Затем включается аппарат и лучи моментально проникают сквозь сварной шов, попадая в итоге на пленку. На ней отображаются все неровности интенсивности, которые показывают наличие дефектов.
Данный процесс может оказать вред здоровью, так что необходимо соблюдать все правила техники безопасности.»
Меры по технике безопасности
Чтобы сохранить свое здоровье при частом проведении подобных процедур, следует придерживаться ряда предписанных требований. В первую очередь, устройство должно быть экранировано, чтобы излучение не распространялось по всему помещению, а действовало только в строго направленное место. Для экранирования зачастую используют металлические пластины. Они же могут пригодиться для обустройства стен помещения, которые также должны быть ограждением для распространения излучения.
Во время работы следует держаться как можно дальше от излучателя, насколько это возможно. Также стоит уменьшить время пребывания в помещении во время работы техники. В данном месте не должно быть ни каких посторонних людей. Все работники должны иметь средства индивидуальной защиты.
Все работы должны проводиться только при условии, что техника исправна и правильно настроена. Стоит понимать, что минимальной дозы излучения сложно избежать, но она со временем накапливается, если процедуры проводятся часто и это может вызвать серьезные осложнения, перерастающие в хроническую профессиональную болезнь. Исходя из этого, необходимо следить за тем, какую дозу человек получает за один проход действия аппарата. Для этого используются специальные дозиметры. Также нужно обратить внимание на ионизацию воздуха в помещении, так как при сильно высоком ее уровне может случиться электрический разряд, потому что воздушная масса перестанет быть диэлектриком.